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INTRODUCTION
Despite recent strides towards inclusion in technology, there
is still a large gap between mobile services geared towards
the general public and those available to the visually impaired
community. Current mobile applications on the market in
this realm mostly serve to perform a singular task, which is
inefficient and inconvenient for visually impaired users. Our
project aims to work towards resolving this issue by creating
a centralized, eyes-free application to help blind or low-vision
individuals accomplish many of their day-to-day needs.

Our implementation focuses primarily on the identification of
groceries and medication through auditory reading of labels
and expiration dates. However, the application is designed
to be scalable so that its scope can be easily expanded for
increased functionality. Features that can be added include
integration with It is controlled solely through audio and haptic
cues, which our evaluation indicates to be learnable and usable.

BACKGROUND
Over 285 million people across the world are visually im-
paired, and mobile assistive technologies in phones have be-
come significantly more prominent in the past decade [6].
Since the advent of smartphones, mobile systems for the visu-
ally impaired community should also be completely eyes-free
to ensure users do not have to interact with small text on a
touchscreen, and early wearable solutions have used simulated
3D audio, synthesized speech, and gesture recognition as effec-
tive interaction techniques for navigating the environment [5].
However, while these navigation and screen reader systems
are useful to visually impaired users, many have expressed
concerns over discreetly using them in front of others, self-
consciousness when speaking aloud or hearing audio feedback
from phones, and having the ability to use them when one
hand is holding an object. Studies also indicated that visually
impaired users prefer to use only their mobile phone compared
to having additional wearables [12].

Our environment detection system thus seeks to have an inter-
face that exclusively targets mobile phones, relying only on
common sensors accessible by all users. It also can be oper-
ated with one hand, reduces the degree of motion required by
input gestures, and minimizes audio input and output. More-
over, haptic feedback replaces visual and auditory output when
indicating that user input is received, as past experiments have
demonstrated how it supersedes the need to glance at text on
screens [4]. Haptic interactions are also preferred to create
micro-level prompts and responses that require immediate ac-
tion, whereas audio interaction is more easily misunderstood

and better suited for higher-level instructions that require more
detail than a fixed number of patterns [15].

Prior work in mobile environment detection for visually im-
paired people include hardware-based text reading systems
utilizing text-to-speech and off-the-shelf Optical Character
Recognition (OCR) methods [1, 10], in addition to object
detection and recognition methods on smartphones [13, 11].
However, the former do not have the flexibility of being on
mobile phones, and existing object recognition methods have
the limitation of needing to create a database of exact image
matches to perform keypoint extraction locally rather execut-
ing general serverside feature extraction. Object detection
methods also require users to shake the object of interest,
which lacks the discretion that visually impaired users desire.
Our work packages the intuitive gesture and audio-haptic inter-
faces for user interaction alongside the environment detection
features of the aforementioned systems to create an eyes-free
application that is both easy to use and performs accurate
classification.

Finally, new design paradigms in assistive education technol-
ogy and home automation indicate a desire for audio-based
interfaces that combine multiple functionalities, rather than
discrete functions in various prototypes. Systems should also
be simple, scalable, and customizable on a user level, depen-
dent on the user’s preferences and degree of disability [9, 8].
Our design seeks to do this by providing modular audio-based
commands that could be easily expanded upon, multiple func-
tionalities using either the front or rear-facing camera, and
flexible haptic feedback alongside or in lieu of audio prompts.

APPLICATION DESIGN & IMPLEMENTATION
Our application was developed with the Expo platform and Re-
act Native framework, using libraries and sensors compatible
with both Android and iOS: the microphone, accelerometer,
and camera. Our backend is set up with Google Cloud, lever-
aging Google Cloud APIs for object identification, speech-to-
text, text recognition, and text-to-speech.

Expo Application
The application is made up of a simple UI design, alternating
between a home screen and a camera display. Upon first use,
the user is prompted both visually and auditorily to allow for
camera and microphone permissions, which is followed by
an auditory explanation of the instructions for how to use the
app. The home screen is shown by default, and when the
camera screen is inactive for more than 8 seconds, the display
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Figure 1. System design block diagram with mobile phone input sen-
sors (orange), device output methods (blue), and cloud-based endpoints
(yellow).

is reverted to the home screen in order to minimize battery
consumption.

The user can indicate for the application to begin listening for
commands by either shaking the phone or double tapping the
screen, which allows for an intuitive and flexible trigger. We
made sure to implement significant flexibility with the ‘shak-
ing’ trigger using the accelerometer sensor from the phone, so
that each user would be able to shake in their desired direction
or speed and be able to activate the listening functionality of
the application.

Figure 2. The default home screen (left) and the camera display (right)
of the application.

Upon activation of the listening trigger, the basic commands
that the user can use include: flipping the direction of the cam-
era, identifying the current direction of the camera, reading
text, classifying objects, and repeating the instructions. When

the command has been identified, the phone will vibrate to
signal that the command is being processed and executed.

The two primary actions among these commands are the read-
ing of text and classification of objects from the camera. When
the user shakes the phone or double taps the home screen, the
application will switch to the camera display. Then, if the
user prompts for either reading text or identifying an object,
the app takes a picture and sends the picture to the Google
Cloud backend for processing. The phone will pulse after tak-
ing the picture, in order to indicate to the user that the image
has been taken and is being processed for recognition. Upon
successful recognition of the text/image, an automated voice
will utilize the text-to-speech API to announce the processed
text or image, thus communicating the desired information to
the user.

Google Cloud Integration
The application leverages Google Cloud APIs for speech-to-
text, object identification, text recognition, and text-to-speech.

We first use speech-to-text in order to parse the commands
inputted by the user. Once we have scanned the words in the
command for the trigger words, we perform the desired action.
We implemented recognition of synonyms in the commands in
order to provide the user with greater flexibility in vocabulary.
For example, users can flip the camera by either saying "flip"
or "turn". Since our commands are designed to be relatively
unique from each other, we were able to implement the recog-
nition of synonyms without overlap between different action
commands.

When the action desired is object identification, we take a
picture using the camera, then send the picture into the object
identification API through the appropriate REST endpoint.
The API then returns a JSON array of possible identifications.
We initially would simply select the first item in the JSON
array as the identified object. However, upon performing basic
testing, we found that many objects were identified to be broad
categories such as "greens" or "food". In order to establish a
finer level of granularity in the identification, we implemented
an algorithm that would parse out vague words and return
more specific identifications from the JSON array. We found
that this allowed us to have much more success in identifying
objects, with the level of specificity we envisioned.

When the action desired is text identification, we similarly
take a picture using the camera, then send the picture into the
text identification API through the appropriate REST endpoint.
The API then returns a string of the detected text from the
picture.

We use the text-to-speech API to verbally identify the contents
of the picture taken by the user. When the object or text
identification API returns with the proper label, we pass the
label into the text-to-speech API so that an automated voice
can read the identification aloud to users.

Design Considerations
Battery Consumption
A vital part of creating a successful application is minimizing
battery consumption. We evaluated the different components
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of our application in order to distinguish what the most signifi-
cant battery drains would be. We determined that the camera
display, microphone usage, and accelerometer readings cre-
ated the largest energy costs.

In order to reduce these costs, we set timeouts for both the
camera and microphone to be used. When the user has not
made any interaction with the camera display for longer than
8 seconds, the app switches back to the default home screen to
minimize amount of time spent displaying the camera. In addi-
tion, when the user is inputting voice commands, the app uses
the microphone to listen for only 5 seconds before processing
the commands. This allows the user enough time to say one of
the trigger words in the commands while minimizing battery
power consumption

We also implemented duty cycling with the accelerometer
in order to avoid constantly reading from the accelerometer
- this additionally helped reduce the energy cost from the
application, while still maintaining accurate functionality in
detecting shaking of the phone.

User Privacy
We wanted to consider any possible user privacy issues in
designing our application. The primary concern would be
in the requirement for users to interact with the app through
voice commands and auditory feedback. However, given that
visual cues are not effective for visually impaired users, there
seemed to be no other option for communicating with the user
besides through audio.

Users concerned with privacy could use headphones so that
the output audio from the application would remain confiden-
tial to just them. This would allow outside observers to only
hear the commands spoken by the user, which are discrete
and nonspecific, while the object and text identification would
be kept private to just the user. With this being a convenient
workaround in offsetting user privacy concerns, we felt suffi-
ciently justified that there were no significant breaches of the
user’s privacy in using the app.

Another possible concern is that the identified objects and text
could be stored, thus creating exposure in the user’s privacy.
However, we do not store the information in the app - once
the identification information is returned from Google Cloud,
read aloud, and shown on the screen, when the timeout period
passes, the information is no longer stored anywhere on the
application. This means that the user should feel no concerns
with their private information being recorded or exposed.

Latency
Backend server latency has a high impact on the user experi-
ence of applications, and high latency decreases the likelihood
of users continuing to use a platform [2]. Our design thus
seeks to minimize the delay between when the Expo applica-
tion sends encoded image or audio data to the Google Cloud
server and when it displays a response to the user.

To help achieve this, we attempted to minimize the amount of
data sent to the cloud for processing. We perform compression
on images captured from the camera before they are sent to the

server for classification. We experimented with various com-
pression levels, such that the application has an appropriate
tradeoff between classification accuracy and response latency.

Moreover, audio is recorded with a frequency of 44.1 kHz and
a bitrate of 128 kbps using only one audio channel. We also
compress audio through the Advanced Audio Coding (AAC)
standard on Android phones. This was sufficient for achieving
high accuracy in speech recognition while minimizing the size
of the data packets sent to the server.

Because maintaining the visibility of the system’s status while
minimizing audio clutter is a key design principle of mobile
computing applications [3], we opted to output a short haptic
vibration to confirm that the phone was processing audio com-
mands after recording, while a similar vibration and camera
noise indicated that an image was taken and being processed.
This set up user expectations that the system would output the
result of image recognition or speech detection approximately
one second later.

Input/Output Methods
In early stages of testing we noticed two areas of weakness
with regard to user input: 1) users did not always remember
commands clearly and 2) commands were not recognized with
100% accuracy.

To address the first issue, we implemented recognition of
synonyms for voice commands, for example allowing users
to flip the camera by either saying “flip” or “turn”. The most
concerning issue with the second issue was the wait period
between the user giving a command and realizing it had not
been recognized. This confusion is due to the process time
of image labeling for read/identify commands, as even when
recognized there is often a long pause before output is ready.
To fix this we implemented haptic feedback on recognition of
voice commands, so the user feels a vibration that signifies an
image has been captures and is being analyzed.

To maintain consistency with our goal of a completely eyes
free interface, we chose to convey all output verbally in addi-
tion to labels on the screen. This includes a “listening” prompt
once the user shakes the phone as well as text to speech trans-
lation of all image and text labels.

Notifications accompanying the output are through haptic feed-
back, alerting the user when results have been processed and
on any state change such as flipping the camera or transitioning
between listening modes.

EVALUATION & RESULTS
In order to mimic the limitations of visually impaired users, we
evaluated our application by blindfolding unfamiliar test sub-
jects and having them try to perform identification tasks with
the app. Our tests showed positive results, with indications of
easy discoverability and successful functionality.

Eyes-Free Ease of Use
To evaluate the general usability we tested the app on 9 differ-
ent users. For each procedure the participant was introduced
briefly to the service, then shown an example of it being used.
Following a brief period in which they were free to familiarize
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themselves with voice and movement controls, we had partici-
pants blindfold themselves to test it more effectively. While
testing in a grocery store was not possible, in each scenario
a shelf with a variety of food was set up to mimic such a set-
ting. The testing consisted of two sections: one for identifying
objects and the other for reading text.

First participants were asked, using any method, to identify
three distinct objects which most did intuitively through the
"identify" command. In one situation the "read" command was
attempted, which proved difficult at first until the participant
chose to flip the camera and hold the object above the phone,
decreasing background noise. Within the first 10 attempts all
users were able to distinctly identify 3 objects, with an overall
accuracy of 76.5% image recognition.

Figure 3. Identification of medicine bottle labels (left) and grocery items
(right). Note that the text labelled on the bottom is for supplementary
purposes to confirm accuracy of identification, as the text would not be
easily visible for visually impaired users.

Next participants were asked to identify 2 objects by reading
the label out and find the expiration date of another. This
proved much more difficult than the previous test as writing
in the background was also detected and read out. 7 out of
9 participants chose to flip the camera to better read objects
they’d removed from the shelves. While this proved to be an
effective solution, an issue we noticed was that other objects
were occasionally knocked askew or off the shelves in the
process. Text recognition proved to be very accurate with the
main source of error being crinkled or folded bags that hid
lettering, however by holding objects up the weight of the bags
smoothed them out.

Identifying expiration date was the hardest goal for partici-
pants to achieve by far, as in general there is no standardized
placement for all objects and the date is easily lost among
other packaging text. 5 out of 9 participants achieved success
with this task by feeling around for bottles on which they ex-
pected the expiration date to be on the top. As that was the
example given to them while introducing the feature, it is hard
to measure how intuitive this approach was, yet it still proved
effective.

Another aspect we tested on is whether or not users remem-
bered the list of available commands and could recall them to

double check camera direction, flip camera, or read out instruc-
tions in addition to reading and identifying objects. All users
performed well for this criteria and all remembered the com-
mands, with some knowing the variations of the commands
as well (i.e. "turn" can be used instead of "flip" for the same
result).

System Latency
The Google Cloud APIs are a critical component of the ap-
plication’s functionality, such that significant latency could
serve as a bottleneck to the user experience of our system. We
thus measured the latency of each call to the Cloud Vision
(aggregating both label detection and text detection) and Cloud
Speech-to-Text APIs when evaluating our system, with results
in Table 1.

API Endpoint Median (ms) P95% (ms)
Cloud Vision (n = 187) 1057 1997

Speech-to-Text (n = 135) 624 1006
Table 1. Median and 95th percentile response latency of Google Cloud
services during evaluation.

Prior research has indicated that response times around 500
ms are often unnoticeable to users, though users tend to feel
delays in software applications after 1000 ms of latency [2].
Combined with haptic confirmation that voice commands are
being processed, we believe that the median response time of
the Speech-to-Text API (624 ms) does not significantly affect
the user experience.

However, the Cloud Vision API has a median latency of 1057
ms and a 95th percentile latency of 1997 ms, which was gen-
erally noticeable during our evaluation studies and should be
reduced in the future to improve the responsiveness of the sys-
tem. This could be done through increased image compression
before sending images to the evaluation server or device-based
feature extraction (e.g. local object and text detection with
server-side classification) to crop out unnecessary elements
in images [7]. In addition, if this system was specialized to
certain retail locations with a more limited list of items for
classification, transfer learning models could be deployed to
edge-based Internet of Things devices located within stores to
provide more relevant results to users while minimizing the
cost of sending data to a remote server and classifying images
[14].

CONCLUSIONS & FUTURE WORK
A key area for improvement in the application is in providing
users with a sense of spatial awareness. Visually impaired
users could struggle to correctly point the camera at the in-
tended object, so it would be helpful to implement function-
ality to guide the camera movement. When an insignificant
identification is made, the application could inform the user
of a possible misdirection and suggest a direction to move in
through haptic or audio feedback. The lack of spatial aware-
ness presents a significant issue that visually impaired users
could face, so implementing a feature such as the one de-
scribed could greatly improve the usability of the application.
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There are many ways in which the features of our application
can be expanded for greater functionality and centralization
of common tasks for visually impaired users. The mobile app
could provide notification summaries from messages or social
media platforms such as Instagram and Facebook; it could also
be integrated with Siri or Google Assistant for easy activation.
Features could also be added to read a grocery list to users
while shopping or calculate a tip from scanning a receipt.

Ultimately, we believe that our application provides a promis-
ing platform for allowing people in the visually impaired com-
munity to have greater convenience and ease in performing
many of their day-to-day tasks. We hope that with the develop-
ing advances in technology, underrepresented groups such as
visually impaired people can receive more much-needed aid
so that any deficiencies perceived in their quality of life due to
their disabilities can be supplemented by helpful technology
similar to the application we have developed.
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